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Absfract-Singular Helds at the tip of an interface crack in anisotropic solids are reviewed with
emphasis on establishing a framework to quantify fracture resistance under mbted mode conditions.
The coO\;epts of mode miJtity and surfac..'C toughness are unified by using generalized interface
traction components. The similarity bctwl."Cn the anisotropic theory and existing isotropic theory is
shown. Explicit formulae arc given for mis()riented orthotropic bimaterials with potential itppli­
cations envisioned including composite laminates and scmiconductor cryslllis. Competition bctwl.'Cn
crad eJttension "ll1ng the interface and kinking into the substrate is investigitted using it boundary
layer formuh.tion. Several C:ISC studies revealthc role of anisotropy. An explicit complex variilble
represcntation for orthotropie rn:.terials :md a solution to a dislocation inter:leting with a critck arc
prcscnlc.."tl in two sclf-cllnlaincd Appendices.

I. INTRODUCTION

Substantial progress has been made on the mechanics of interface fracture. The recent
development is assessed in an Acta Scripta Metallurgica Proceeding edited by Ruhle et al.
(1990). An engineering program has emerged which allows the fracture resistance of inter­
f.lces to be measured and utilized. Specimen geometries suitable for fracture testing are
rigorously calibrated (Suo and Hutchinson, 1989; Charalambides et al., 1989; O'Oowd et
01., 1991). The program has been implemented in experiments by several groups (Cao and
Evans, 1989; Wang and Suo, 1990; Liechti and Chai, 1991). Applications are made to thin
films, adhesive joints, and composite laminates (see Hutchinson and Suo, 1991).

An empirical fact is that the fracture resistance of an interface depends strongly on the
mode mixity, the relative proportion of the opening and sliding tractions ahead of the crack
tip. The concepts of mode mixity and surface toughness have recently been rationalized by
Rice (1988) for interfaces in isotropic solids on the basis ofsmall-scale irregularities (contact
zone, inelastic zone, etc.). These concepts are extended here by applying several unifying
results due to Suo (1990) to solids ofarbitrary anisotropy. The mode mixities will be defined
by the generalized interface traction components ahead of the crack tip. Explicit results,
listed for misoriented orthotropic solids, lend themselves to immediate applications to cross­
ply laminates and brittle bicrystals. Experimental aspects ofdetermining surface toughnesses
are briefly discussed.

A complexity in interfacial fracture testing is that, under mixed mode load, the crack
has a strong tendency to kink into the substrate. Crack kinking has been observed for brittle
substrates such as glasses. ceramics and polymers. Semiconductor crystals provide another
example where the crack may kink onto preferred crystallographic planes. The question of
whether the crack will extend along the interface, or kink into the substrate is addressed in
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Fig. I. i\ oimaterial intcrf;lCe crack suoject to mi'ed nHlde lllading. Two virtual crack directIOns
and their driving forces ~Ire indicated.

this paper. Figure I illustrates the two competing virtual crack extension directions, where
~r; and ~r;k,"k arc the energy release rates for the crack to ex.tend along. and kink out of. the
interface. These erack driving forces depend on the magnitude of the applied loads, the
relative proportion of the opening to the sliding loads. and the clastic constants. The
extension kinking wrnpetition also involves r, and r" the fracture resistances of the
substrate and interface respectiVely. Broadly speaking. the tough substrate would confine
the crack to extend along the interface. Kinking is favored if

~iJk",k I'
> r'·

I

( I)

The aim of the paper is to provide a cornpn:hensive framework within which the material
properties r, and r; can be quantified, and the driving forces '9'klllk and '9' can be computed.
without ambiguity.

The plan of the paper is as follows. In Sections 2 and 3. we review the recently obtained
general results on interfacc cracks. Effort is made to extend the interfacial fracture mechanics
to inelude anisotropic solids, with special emphasis on orthotropic materials so that practical
problems such as delamination of composites can be addressed. In Sections 4 and 5 the
competition between crack extension along the interface and kinking into the substrate is
formulated. Case studies are presented for bicrystals and aligned orthotropic bimaterials.
An explicit complex variable representation for orthotropic solids is summarized in Appen­
dix A. The interaction solution for a dislocation and a crack. which is used as the kernel
function for the integral equations. is presented in Appendix B.

2. CRACK TIP FIELD

Interface cracks in anisotropic solids were first analyzed by Gotoh (1967), Clements
(1971) and Willis (1971). Recent results ofQu and Bassani (1989). Suo (1990) and Wu
(1991) have made it possible to formulate a unified theory of a fracture toughness surface.
Specifically. the structure of the interface crack tip field has been completely identified and
analytical solutions have been found to several boundary value problems. The elasticity
theory is summarized in this section using the notation of Suo (1990). The treatment is
unified by a 3 by 3 positive definite Hermitian matrix. H, defined in Appendix A. The matrix
depends on the clastic constants of the two materials and has dimension ofcompliance. Ting
(1986) and Qu and Bassani (1989) showed that the oscillatory index f. = 0 if and only if H
is real. For this reason and several other considerations that will become clear. the real and
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complex H are treated separately. As a convention, the crack lies on the (x,=) plane and
propagates in the x-direction.

2.1. H is real
For this case, the Hermitian matrix H becomes symmetric. Stresses are square root

singular, and linear in three stress intensity factors K" KII and KlIl

(2)

The dimensionless functions, a~. aff and aff', are so normalized that the interface tractions
a distance r ahead of the tip take the familiar form

K,
(J.,·.v = j2;;'

KII
(J.ty = j2;;' (3)

Suo (1990) noted that the angular functions in (2) are identical to those for a crack in
homogeneous materials. Specifically, the functions for substrate I are the same as those for
a crack in a homogeneous solid of the same elastic constants. The same holds for substrate
2. Consequently. these functions can be found in the article by Sih et al. (1965) on cracks
in homogeneous anisotropic solids.

With the interface traction vector t = {(Jy;} = {(J..... (J.v.Y' (Jy:} , the three stress intensity
factors should be grouped as

k = {K". K" KlIl }.

In terms of k, the ncar-tip traction vector can be rewritten

k
t(r) = r-;='

V 21tr

(4)

(5)

The displacement jump vector, D= {~x, ~y,~:}. a distance r behind the crack tip is linear in
k:

[£
6(r) = -J -; Hk.

The energy release rate "§ is quadratic in k:

(6)

(7)

Standard matrix operations are implied in the above formulae. The near-tip results given
above were first obtained by Qu and Bassani (1989).

Analytic solutions have been found for several boundary value problems. An example
is the Griffith crack of Ic:ngth L on the interface between two solids with real H but otherwise
generally anisotropic. The body is subject to remote stresses (Jyy. (J.ty and (J,.:. The stress
intensity factors are:

(8)

It is understood that the appropriate stresses (In and (Jx: are applied at infinity so that a
uniform strain state exists at remote boundaries.

Two important classes of problems are known to have real H: (i) a crack in a homo­
geneous anisotropic solid (Sih et al., 1965) and (ii) a crack along a tilt grain boundary with
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the crack front and tilt axis normal to a mirror plane of the material (Qu and Bassani.
1989). In the following examples. the tensor H is given explicitly for orthotropic bimaterials.
which are obtained by a simple rotation method described in Appendix A. All elastic
constants are referred to the principal coordinate as defined in Appendix A.

Example I. Crack in a principal direction in a homogeneolls orthotropic solid. For a
crack running in the principal direction x \. H is a diagonal matrix with elements

For example. the general expression (7) takes the explicit form

( 10)

The order of the stress intensity factors is noted.

Example 2. Crack in an arhitrary direction in a homogeneolls arthotTOpic solid. Consider
a crack running in the direction x. which is rotated counterclockwise from the principal
axis XI by an angle 0. The matrix 1/ has clements

11 11 = 411(.1"11.1",,) 11().1 4cos 111+ i. 14 sin 1 II),

1111 =411(,\'II'\·11)11(). I 4cos111+i.14sin11J).

11 11 = 1111 = -2n(,\'\1'\'11) I 1().1 "_i. I 4)sin 21J.

11 11 = 2(.I"44S~~)11, H il = 11 11 = H lI = 1/'1 = o. ( II )

Example 3. Crack (III a tilt grain hOlllldary. This is a bimaterial interface with real,
symmetric H. The tilt boundary is formed by two misoriented. but otherwise identical,
single crystals. The (x• .1') plane is a plane of mirror symmetry and the crystal is orthotropic.
The principal axis XI of the two grains is rotated from the x-axis by 0 1 and 01. respectively.
For a crack on the grain boundary running in the x-direction. the clements of Hare

11 11 = 211(SII'\'11)11[(cos 1 1J 1 +cos 1 OJi. ' 4+(sin 1 0 1+sin 1 (1)i. 14).

H11 = 2n(SII S1Y 1[(COS1 01+cos 1 (1)i. 14+(sin1 01+sin 1 OJi. 14 ).

1112 = 1111 = 1I(51I S22)11(i. 1 4_i. -14)(sin 20 1-sin 20 2 ).

H JJ = 2(5 44555)11, H IJ = H 2J = HJI = H J1 = O. ( 12)

2.2. H is complex
The structure of the crack tip field is governed by an algebraic eigenvalue problem

( 13)

where w is the eigenvector, e 2
n< the eigenvalue. and the overbar denotes the complex

conjugate. The three distinct eigenpairs have the form (c, wi, (-c. w). (0, wJ ). The oscillatory
index I: is real, eigenvectors wand w, arc complex and real, respectively, and all of them
are dimensionless. The physical significance of these quantities will be apparent shortly.
For the case of real H consequences are clear: I: = O. and any w is an eigenvector. The
eigenvectors {I, 0, O}, {O. I, O} and {O,O, I} arc adopted in Section 2.1.

The crack tip field is a linear combination of two types of singularities; a coupled
oscillatory field scaled by a complex K, and a non-oscillatory field scaled by a real K, :
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(14a)

Here the dimensionless angular functions also depend on elastic constants and can be
extracted from the neaHip solution in Suo (1990). The two stress intensities have different
dimensions.

K = [stressWengthJ1>it. K) = [stressJ[lengthJ I z. (14b)

The implications of the unusual dimensions will be explained later.
An essential step towards a unified concept of the mode mixily is to decompose the

interfacial traction t = {crr ,} using eigenvectors as base vectors:

(15)

Here I. i and I) are the generali:ed componenlS of the traction rector. where t = tZ+it 1 is
complex and t) is real. Note in general t #- cryv+iO'.y and t) #- t..:. As r - 0, the two com­
ponents vary in accordance with

Krir. K\
t(r) = r:::;:::' II(r) = r::;:.,-.

y'2nr y'2nr
(16)

Since rir. = cxp (ir. In r) = cos (8 In r) +i sin (r. In r). the traction component 1 = 12+ it I

rolates as r v"ries. The physic,,1 signific"nce of w "nd w) is now tmnsp.lrent. The component
II projected onto WI is squ"re root singular. In the plane spanned by Re (w) "nd 1m (w).
the component 1 rvtates and is square root singular.

The crack face displacement jump vector is

o(r) = (II+17)J'- [_._- -~~~~- ~ + ._~t:~_.'f.w ._ +K)W
1
]. (17)

2n (I + 211:) cosh ttc (I - 211:) cosh itC

The energy release rate is rclatt:d to K and Kj via

(18)

Note the contributions from the two types of singularities are additiw. These near-tip fields
were first obtained by Suo (1990).

To date. only one class of boundary value problems has been analyzed for generally
anisotropic materials, namely a colinear array of cracks on the interface between two semi­
infinite substrates. The stress intensity factors are found to be identical to their counterparts
for isotropic bimaterials. For example. for the Griffith crack described earlier, with the
applied traction vector t = {cr.n • O'n" O').:} decomposed into the generalizcd components 1
and 1J. the solution is

K = t(1 +2ie)L -ltJitL/2, KJ = I J/rrL/2. (19)

This is formally identical to the solution for isotropic bimaterials. However, in general
1 #- O'yv+iO'y.• and I) #- O'y:. Contrasted below are the near-tip field structures for isotropic
and orthotropic bimaterials.

Example J. l'iOlrOpic bimaterial. For an interface crack between two isotropic materials,
the H matrix takes the form
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(20)

2 I I
.=-+­
J1. PI J1.~

IX = Ill(1-V~)-J1.~(l-VI), 13 = ~ p,(1-2v~)-J1.~(1-2v,).

J1.1(1-v~)+J1.2(I-vd 2 J1.I(l-V2)+J1.2(I-v,)
(21 )

The bielastic constants :x and fJ are called Dundurs' parameters. From (13), the eigenvalue
and eigenvectors are

I 1-13
E = 2n In l +13' W = {-i/2. 1/2.0}. W J = {O,O.I}.

It follows from (15) that the two traction components take the familiar form

t = (1,.\.+i(1",. 1.1 = (1,.:.

(22)

(23)

The stress intensity factors. K and K 1 • are defined such that the two traction components
a distance r ahead of the crack tip arc scaled as

K J(1 = .__._~
". j2nr'

(24)

The displacement jumps a distance r behind the crack tip are

c5 + ic5 - L__~_ 4Kr" J~~ J. = 2K~ J~~.
y '-(1+2il;)cosh1tl; E* n' . Il· n

The energy release rate is related to K and K) by

q; _ IKI 2
_1_ 2

9 - E. h' +..,. K).cos 'ne _p

(25)

(26)

Example 2. Aligned orthotropic bimaterial. Consider two dissimilar orthotropic
materials bonded with the principal axes aligned, and the interface is running in the x,"
direction. The components of Hare

H'I = [2n;_II\/;~·,s2211+(211).1!4jslls2~h

H 22 = [2n). - li4 jS"S221, + [2n). - 1/4 jSllS22h

H,~ = fi 21 = i[jsIIS22+sI211-i[fi,~'s22+S'2h

H)) = [jsHsss11+[jsHsssh

HI) = H 2) = H)l = H)2 = O. (27)

Here [ 11 designates quantities for material 1, and 12 for material 2. The generalized
Dundurs' parameters IX and 13 are given by
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(28)

W 3 = {D.O. I}. (29)

It follows from (15) that the generalized traction components are

.Jfiillt = (1 •.•. + I -(1.n·'
. H~~

(30)

Note that the complex component now contains a scaling factor. For example. for most
polymeric composites with cross-ply laminates ../H 11/H ~~ is between I and 2. The near-tip
stress field consists of two types of singularities: an oscillatory singularity scaled by the
complex K. and a square root singularity scaled by KJ •

(31 )

Ohserve that the complex stress intensity factor K does not reduce to K,+ iKu when c = O.
If and only if /1 11 / /I ~~ = I do the stress intensity factors K reduce to the conventional stress
intensity factors. The ahove normalization of K is slightly different from that introduced
by Suo (1990).

The displacement jumps have the form

The Irwin-type energy release rate is

(" If!~ 1l'1~ III l'~9 = -~-'-----,-- n + 4 .lJn J.
4 cosh' n:c

(32)

(33)

Example 3. lvli.l'al(qned ortllOtropic himaterial. The explicit form of H can be obtained
from the B-matrix (A II) in Appendix A. Details are omitted here.

3. MODE MIXITY AND SURFACE TOUGHNESS

([ has been generally observed in experiments that cracks in isotropic. homogeneous,
brittle solids seek to propagate on planes ahead of which local Mode I conditions prevail.
Consequently. one single parameter. K/C. can be designated to each material to quantify its
resistance to fracture. By contrast. whenever planes of low fracture resistance exist. cracks
may be trapped onto such planes. regardless of the local mode mixity. Orthotropic materials
such as composites and brittle crystals provide examples where definite weak planes exist:
longitudinal planes for composites and cleavage planes for crystals. Interfaces offer another
example when they arc brittle compared with the substrates. A well-documented exper­
imental fact is that fracture resistance for such weak planes depend strongly on mode
mixity. Rather than a single toughness value. it is values at various mode mixities that fully
characterize the fracture resistance of a weak plane. In the following paragraphs. mode
mixity will be defined precisely for both H real and H complex.
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(0) (b)

Fig. 2. Mode mixities defined as solid angles in the K space.

3.1. Mode mixity for material pairs with real H
When all three modes are present. the mode mixity is fully specified by two solid angles.

t/J and cPo in the space of the interface traction vector t =: {an.all.a,:}.

tan t/J =: a"./a,.\.. cos cP =: a,·:lltl as r -+ O. (34)

With the asymptotic field (3). an equivalent definition can be given in the (/\1'/\11'/\/11)

space:

KII Kill
tan t/J = (" cos (/) = " " "I' .

1\.1 (K; + Kif + 1\;11) -
(35)

The mixities I~ and (f> arc indicated in Fig. 2a. These definitions also apply to cracks in
homogeneous materials.

For a given mode mixity (f> and t/J. the fracture toughness. r. is defined as the energy
release rate ~IJ at the onset of crack growth. The fracture toughness. r(I~. (/I) is a propcrty
of the bimaterial interface. For a given bimaterial interface. it is a surface in the K space.
which in general should be determined directly by experiments. Upon loading. a crack will
not propagate unless the driving force reaches the surface toughness, i.e. the mixed mode
fracture condition is

(36)

In the composite community. mode mixity is specified by the ratio ~lJllrlJl' For a crack
running along the principal axis in an orthotropic material. this ratio is equivalent, but not
identical. to mode mixity t/J defined here [see (35)]. In general. however. this "energetic"
mode mixity is not advised since ttl, and ttl ll cannot be unambiguously defined.

3.2. Mode mixityfor material pairs where H is complex
The mode mixity concept can be extended to oscillatory fields by using the generalized

traction components t = t 2+it l and t3 in (15):

. (t l
) (t 3

)tan t/J = - . cos ¢ = -,I .
t2 r-l t ,-0

(37)

Here it is necessary to introduce a fixed length L in order that the mode mixity be uniquely
specified. Lmust be independent of the overall specimen size and specimen types; a sensible
choice of L should fall between the inelastic zone size and the specimen size. For example.
L =: 100 ,urn is suitable for many brittle bimaterial specimens at the laboratory scale.
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Using the asymptotic field (16). the mode mixities ~ and 4J can also be defined in the
K space

(38)

The mode mixities ~ and 4J are indicated in Fig. 2b. As a consequence of the oscillatory
field. the traction ratio t) 1t ~ varies slowly as r moves away from the tip. As implied by (38).
the phase shift from r = L, to r = L~ is

(39)

This would not be a big shift for moderate variations in L For example. for a glass-alumina
interface, e = 0.05. the phase shift for a decade change L21LI = 10 is ~ 2 - ~ I = 6.60

•

The mixed mode fracture condition is

rs(~,4J) = f(~,4J). (40)

The fracture resistance is unambiguously specified by a surface f{r/I.4J), together with a
length i for the definition of~. This engineering approach to quantify the fracture resistance
is an extension of the existing theory for isotropic solids. The conceptual basis for this
approach is summarized in Rice (1988) and several articles in a volume edited by Ruhle et
al. (1990). The experimental implementation can be found in Wang and Suo (1990). Liechti
and Chai (1991), and Ahmad and. Majumdar (1991).

Consida the loading phase'" for two special cases. For an isotropic bimaterial

t'ln ~ = It1!"~~tr.>. = (~:.)
, Re(KL''') IT... r-/:

and for an aligned orthotropic bimaterial

(41 )

(42)

The scaling factor Jfl::ilJ;~ is necessary to maintain the phase shift ruk (39). which is
important in interpreting and using surface toughness.

3.3. Experimental determination ofsurj'lce {(}/Ighnesses
In principle any geometry with an interface crack can be used to determine toughness.

The geometry can be calibrated by analytical or numerical evaluation of the stress intensity
factors. As an example, consider a Griffith crack of length L on the interface between two
aligned orthotropic materials. Specialized from (19), the complex stress intensity factor is

K = (I + 2ir.)JrtL/2C"(ITY}. +iJH1,IHuu.t }').

The loading phase ~, extracted by comparing (43) with its definition in (38), is

~ = tan-
1
(2e)+tan-

1 (Jz~~ :;;)+eln (~).

(43)

(44)

The last term is the phase change with crack size L under fixed applied load.
The mode mixity can be varied either by changing the proportion of the loads for

multi-load specimens or by the change of specimen configuration. A set of specimens which

SAS 29:3-E
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is suitahle for cross-ply composites is illustrated in Fig. 3. These geometries produce near­
tip liclds ranging from predominantly tension to predominantly shear. They arc calibrated
using finite clement analysis hy Choi 1'/ al. (1991). Similar specimens for uniaxial composites
have heen calihrated hy llao 1'( al. (1991) for arhitrary clastic constants.

4. KINKING IN IlICRYSTAI.S

Thl.: topic of crack kinking is now taken up. Figurl.: 4 shows a tilt grain boundary of
an orthotropic crystal, i.e. the two grains arc misoriented but otherwise identical. Thl.:
principal matl.:rial axis x I is tiltl.:d from x by angles () I and lJ 2, rl.:spectivcly. The (x, .1') plane
is a plane of mirror symmetry, and the tilt axis and crack front arc normal to the (x, .1')

plane. A small scale kinking problem is considered in that the kink length II is the only
length scale in thl.: prohlelll, i.e., all the other lengths arc much larger than the kink length.
As noted in example 3 in Section 2.1, the matrix 1/ for such a grain boundary crack is real,

K~in~ K~\n~
I • n

Fig. 4. A schematic or a small-scale kink problem. The principal dirL'Ction x, is tilted rrom the x­
a,is by (I, and (I, rcspectively. The parcnt crack is under mi;l;ed modc load.
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Fig. 5. Coefficients Ct , for a symmetric tilt cubic bicrystal.

and the crack tip field is non-oscillatory. square root singular. Consequently. the remote
loading can be specified by the stress intensity factors K, and Kif of the familiar type.
Consistent with the spirit of the small-sc.t1e kinking formulation, K, and Kif should be
computed from the actual specimen size and loading with the kink ignored. The stress
intensity factors at the kink tip are denoted by K~,"k and K~;"k.

Linearity and dimensionality dictate that

K~"'k = C I I K, +C I ~ Kif

f..:~;"l = C~IK,+C~~KIf (45)

where e"depend on w, 0 I. lJ ~ i. and pout I/of on kink length a. The complete solution for
a special problem, crack del1ection in homogeneous orthotropic solids. has been reported
elsewhere (Suo ef al., 1991). Determination of these coellkients requires that the boundary
layer problem be solved rigorously. An integral equation method used in He and Hutchinson
(19H9) was adopted; the kernel function needed for this work is presented in Appendix B.
Attention here is restricted to several case studies that reveal the elfect of anisotropy.

4.1. Cuhic hicrysfals
Consider two cubic crystals with elastic constants i. = I and p = - 0.19 which form a

symmetric tilt grain boundary with 0 1 = ()~ = 38.9 (Fig. 4). The computed values of e,j as
a function of the kink angle UJ are shown in Fig. 5.

The energy release rate for the crack extending along the interface. specialized from
(12) and (7). is

(46)

For the kinked crack. ~~k,"k can be obtained from (10) by setting i. = 1 and SII = 5 22:

(47)

Note that energy release rate relations are identical in form: a consequence of H being
anisotropic second order tensor for subic bimaterials. The ratio ~~kinkrlJ is plotted as a
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Fig. 6. Crack driving force ratios <§kin'!'§ as a function of the kink angle w under several remote
loading mixities I/J = tan - I (Kif! K,).

function of kink angle w for several values of remote loading phase 1/1 in Fig. 6. Since the
parent crack is mostly likely to kink into a principal plane. i.e. w = 02' we have cross­
plotted the ratio 'f}klRktlJ as a function of loading phase 1/1 for w = O2 = 38.9" in Fig. 7. The
curve clearly shows that the available energy for kinking increases rapidly and then decreases
with the loading phase. As a comparison. the result from He and Hutchinson (1989) for
isotropic material (I' = I) is included in the plol. The efTect of anisotropy can be secn ; the
isotropic approximation would underestimate the possibility of kinking.

The additional information rCljuired to assess the competition between extension and
kinking is the fracture resistanccs of the substrate and the interface. f, and f,. Thus kinking
is favored if Cr;klllkrfJ > f';f,.

4.2. Orrhurropic bieryswls
The orthotropy parameters arc taken to be ). = 0.338 and p = 0.439 for this case study.

The principal axes of thc top and boltom crystals arc rotated by V\ = 30 and V2 = 75'.
respectively. The computed values of Co are plotted in Fig. 8.

The energy release rates arc computed from stress intensity factors using the Irwin­
type expressions given in Section 2.1. Figure 9 shows the ratio CfJk,"k /CfJ as a function of
loading phase 1/1 for (I) = O2 = 75. For comparison purposes. the result from He and
Hutchinson (1989) is included in the plol. The clTect of anisotropy can be seen; the
possibility of kinking is also underestimated by the isotropic approximation.

2

O· 30° 60· 90·

Fig. 7. Comparison of the crack driving force ratio ~1J',n'!~1J between isotropic (p = 1) and cubic
«(I = -0.19) hicrystals.
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Fig. 8. Coefficients c" for an orthotropic bicrystal.

2

Fig. 9. Crack driving force ratios '!I'''''/'!J for orthotropic and isotropic bicrystals. The discrepancy
is clearly seen.

5. KINKING IN ALIGNED ORTHOTROPIC BIMATERIAlS

Consider a parent crack on the interface between dissimilar orthotropic materials but
bonded with aligned principal axes. As discussed in Section 2.2, the stress field at such an
interface crack tip is oscillatory and square root singular. A small-scale kinking problem is
formulated with remote applied load represented by a complex stress intensity factor K
(Fig. 10). By dimensional analysis, the stress intensity factors at the kink tip are:

K~ink = CII Re(Ka'C)+C I2 Im(Ka'C)

K~;nk = C 21 Re(Kd')+C22 Im(Ka") (48)

where C
'I

depend on the kink angle wand elastic constants but not on kink size a. Since
K has the generic structure K = IKI ei~ L-k the above relations can be rewritten more
explicitly:

K~ink = IKI[CII cos (~+f. In i)+CI2 sin (~+f.ln i)]

K~;nk = IK{C 21 cos (~+f.ln Z)+C22 sin (~+e In i)J. (49)
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CD

~w I®
1

0

I
Fig. 10. An aligned orthotropie bimaterial is under remote mi:(ed nll'de load. The parent crack

kInks into material 2.
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Fig. 11. Codlicients c" for aligned orthotropic solids ()., = 1.0,/', = 0.19. ;'1 = 0.12. 1'1 = 6.4).

The clastic constants for the two materials are taken to be ;'1 = 1.0, PI = 0.19,
;.~ = 0.12, P1 = 6.4. The values for C" arc plotted in Fig. II for six dilTerent combinations
of a. and {J. The ratio ~fJ''"'I~fJ as a function of phase angle I~ +1; In (a! L). all with (t) = 90'
is plotted in Fig. 12. The role of clastic mismatch parameters ::x and {f are clearly shown.
We point out that the phase angle in (49) is based on a fixed length L which is independent
of the specimen size. For example, L could be chosen to be comparable in magnitude with
defect size a so that the term r.ln (a'L) is negligible. This treatment is consistent with the
mixed mode toughness concept discussed in Section 3, and avoids the conceptual difliculties
that arise in He and Hutchinson (191\9).

6. CO",CLUDI",C; REM.'\RKS

A comprehensive framework to assess whether cracks extend along. or kink out of,
interfaces has been formulated. The framework makes advantageous use of several unifying
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Fig. 12. The ratio ,q'm'/'§ as a function of the loading phase ~ +f.ln(L/a) for (I) = 90' kink.

concepts: the H tensor, eigenvectors wand w" generalized interfacial traction components
/ and t 3' and mode mixity ~ and cP. The framework is completely general in that no special
material symmetry is assumed. The explicit results tabulated for orthotropic bimaterials
allow immediate applications to bicrystals and cross-ply laminates. Several crack geome­
tries, which are suitable for evaluating the fracture resistance of uniaxial and cross-ply
composites, have been calibrated (8ao et al.. 1990; Choiet al., 1990). Many more mixed
mode specimen calibrations and fmcture testings are needed before a fully rationalized
composite material characterization can be accomplished.
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APPENDIX A: COMPLEX VARIABLE REPRESENTATION FOR ORTHOTROPIC MATERIALS

For many problems of practical interest, each of the two bonded materials is orthotropic but their principal
axes may not be aligned. The stress-strain relation in the principal coordinates is:

(::)
-"11 '~11 -'1 , 0 0 0 ,-0'11'>

sz, S11 S ~ 1 0 0 0

C
I: \1 ,".'1 '\'11 ,Ii"~ 0 n 0 <1"

~':Z' =
0 0 0 1\ 0

(AI)
s ..... 0' ~ \

-l<ll 0 () () () \' ~ " 0 <1"

':!!;l :1 0 0 II () II Sf.b ',t1 11

Here .v" arc COmpli'lI1ces which arc relah:J to the Young's moduli. shear modulus ,lIld Poisson's ratios, e,g..
'vII = I/E,. -'z, = I,E,. SM, = I/G" and ,~" = -v,:/[:', = -v z, t·"

As ohserved in Suo (1990). the in-plal1l: strcss lickts depcnd 'In two dimensionlcss parameters.

(A2)

They measure the in-plane orthotrnpy: i." I' = I for isotropic \ol,Js and i. '" I l(lr solids with cuhic symmetry,
Ellipticity implies that i. > () and I' > - I, Valll"s for repn:sent'Il,ve crystals, woods and composites arc in the
range 0,05 < ;. < 20 and 0 < I' < 5, The d<:tinition (A2) pertains tn plane stress, hllt is also valid for plane strain
if S'I is replaced hy '<I "" -',,--', IS, I!'~ I,.

The two-dimensional displacement Iidd in anisotropic solids, u, = u,(x• .1'). i = 1.2.3. C'lII he represented by
three analytic functions /,(:,), /,(:,) and /,(:,). The three complex variahies. =, = X+PiJ' (1m PI > O), arc
obtained by solving for 1', from an algebraic eigenvalue problem involving the clastic constants (e,g., Stroh. 195M;
Lekhnitskii. 19MI), The following results for Orlhntropic material:. arc extracted from Suo (1990),

When the principal orthotropy axes x, anJ x, coincide with x and .1', the characteristic roots arc

for I < p < ,To

for I < IJ < I

for p = I

(A3)

where" = [(I +p)!2j'2. m = 1(1- Pl/2I'!2. The constant n appears in many formulae. The two fundamental
matrices involved in the eomplex variable representation arc

[T
-I':

~J
[ .,,,pi+',, J"pl+s" o -

L= 1 .4= s"p, :s"'P, -'21P2+ S"lp2
iJ,:.,:; j0 0

The matrix B defined by B = iA L - I takes the explicit form

(A4)

i«S"S'2)' : ~-',,)

2ni. - I/'(S"-,,,)' ,

o
(A5)

Stroh (1958) showed that B is a positive definite Hermitian matn, for materials of general anisotropy. This can
be verified directly from (A5) for our special case.

When the principal axes (.X,.X2) do not coincide with (.\:.rl the above matrices can be obtained by an in­
plane coordinate rotation:
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(A6)

where () is the angle from x, to x and is positive in a counterclockwise sense. Ting (1982) showed that the
characteristic roots in (x. y) coordinates are

p; = (P, cos (}-sin (})!(P, sin (}+cos ())

and each column of A and L transforms like a ('ector:

A· = RA. P = RL.

It is obvious from its definition. B = iAL -I. that the matrix B transforms like a second order tensor, i,e.

(A7)

(A8)

(A9)

The subselJuent discussion involves quantities in the (x, y) coordinate (the starred quantities). For convenience
the (.) is dropped hereafter, for example. :, = x+p,y. Once the potentialsf, (:, )'/l(:l) andf,(:,) are found for
a boundary value problem, the displacements u" stresses 11", and resultant forces T, on an arc can be computed
from

.1

U, = 2 Re L A,,!;(:,),,- ,,
(fl' = 2 Re L L,,/;(:,),,- ,

T, = -2 Re L L".!;(:,).
1- ,,

11 11 = -2 Re L L"p,/;(:,).
;-1

(A 10)

IIere ( )' is Ihe deriv:ltive with respect to the .Irgument. Notice from (A3) that the ahove represent:llion breaks
down when " = I. A special representation for this degenerate case is given in Suo (1990). The matrix B with
respect to the x, y axes. at an 'Ingle (/ from the principal .Ixes, is

H" = 211(S"Sll) IIl(),'/. eos l (/+)."/. sinl/l)

Bll = 211(S".f22) '12(). . .,. cos 2 0 +).". sin: /I)

1l'2 = Bl , '" -II(S".f::)"2()."'_), -1I·)sin 20+i«s"s12)'il+ s o:>
8" = (SHSS)112, 8" '" 8lJ" 8"" 8'l = O. (All)

This is obt'lincd hy the tensor rule (A9). Although the discussion is directed to orthotropic materials, the
rc:present'ltion in (A 10) is valid for general anisotropic materials, but the characteristic rools p, and the three
m'llriees A, Land 8 should be computed according to the procedure outlined in Stroh (1958).

The resulls up to Ihis poiOl pertain to a single homogeneous material. The bimaterial matrix fI of central
impurtam:e is defined by

(AI2)

where the subscripts I and 2 indicate the two materials and the overbar denotes complex conjugation. fI is
obviously a positive definite Hermitian matrix. The explicit form of fI for misoriented orthotropic bimaterials
can be obtained from (A II), and several special cases arc listed in the text.

APPENDIX B: DISLOCATION INTERACTING WITH A TRACTION-FREE INTERFACE
CRACK

Attention here is restricted to solids with (x, y) as a mirror plane and the in-plane deformation is considered.
Only upper-left 2 hy 2 matrices of L, A, Band H, and two potentialsf,(:,) andf:(::) arc involved. Following
Suo (1990), introduce a vector potential

(:) = (f'(:).[l(:)}' (BI)

Note the arguments of bothf. andfl in (BI) are identical, and have the form: = x+'y (1m' > 0). Once a solution
of f(:) is obtained,f, andfl should be used with the arguments:, and:2' respectively, to compute the displacements
and stresses from (A 10). This strategy allows the standard matrix algebra to be used in conjunction with a number
of analytic function concepts.
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(a) (b) (c)

Fig B I. A superposition scheme to obtain the kernel functions. (a) A dislocation embedded In a
perfectly b,>nded hlmatenal. (b) An interface crack with tractions prescrihed on the faces. with no

dIslocatIOn. (c) Interaction hetween a dislocation and a traction-free crack.

Consider a line dlsll>cation perpendicular to the ( \ . .1') pl.me with Burgers vector b = : h,. h: at the POlllt

(x".r,,) interacting wnh a traction free crack (Fig. Blc). The solution may he obtained by superposition of the
folll>wlng two prohlems: (a) a disl'>cation in a bimaterial with nl' crack (Fig. Bla): (b) an interface \.Tack with
traction prescribed to cancel thc Interface traction. but without dislocation (Fig. B I b). The solution procedure
was outlined in Suo ( IINO) but only the case r. = 0 was solved. Detailed helow is the solution for the general case
when I: # O.

The S"lutlon to a dis!l>callon in an infinitc "pace of material 2 IS (Eshc1hy <'I <1/.. 1953 I

(,,(:) = :'1, In(:-',).", In(:-<,):.I, = x"+f',r,,. :""'1,: = (211) 'I., '(8,+8,) 'b. (132)

Cllnstructed from (,,(:), tl,,: solution to problem (a) in Fig. B1 is

{

I., 'II '(li,+8,)I.,(,,(:).
((:)= ,- ,- --

(,(:) +1., II (8, -8,)1.,1,,(:),

The mterface traction cakubt<:d from(B3) and (A 10) is thcn:forc

in material I

in material 2.
(Ill)

I(\)~' er;,(,)t-CT;,(,). Co II '(/J,+II;)I.,. (114 )

ThiS tr"l'lIon IS rCIIHlvcd from thc proSpCl'llvC cral'k fal'cs using prohlenl (h) in hg. B I. Thc solution to thc bttcr
l'an he rcprcscnll'J as

i I., 'h(:), Inmatcrial I

(,., 'II 'lIh(:). In matcrial 2.

An eigcnvcl'lor dCl'ompositlon is cmploycd to solvc for h:

hI:) ., Ir,(:)w +h:(:),.

whcre w is the clgcnvcl'tor dclined in the hlltly of thc tc.\t. The l'Ompllllcnts MC:

(B5)

I(X)tlx

X,'(x)(x-:)'

[(x)dx

X; (x)(x - :).

x,(:) = :
, !Iu

X,(:) = :
, ! ~ IJ (117)

Hcrc 115 the componcnt of I 11\ thc scnsc I = IW + 1-", Sll that

wllll(') I' , .
I(X) =·...Iij~ = c,(,,(x)+c,(,,(x)

Inll'gration of (117) givcs

wl (I1, + 11,)1.,

v.'lIw
,,, wl(H, + 11,)[,

w'lrw
(BK)

r( ',IC') q, 1 r( ',IC')' je l 1- x,(s,) :-.l, c~ 1- ZIU'~) :~',
h,(:)

I +
I +c :u

( X,(:)) l/,
1+c- !,u:

1- .. (1- :,'N~) ;~'~X,h',) :-s,

r( "IC') 'I, j r( "IC') 'I 11- .
1- i ,(l,) :-l,-{ X,U,) : -.', c~e,

h,(:) =
I +c'"

+ I +-e'" (89)(1- .~.,(~~ ):_'i~ ( x.(:») l/.
;(,(.l,) • --.\, I - z~'(~-;) :=-"-.;;


