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Abstract—Singular ficlds at the tip of an interface crack in anisotropic solids are reviewed with
emphasis on establishing a framework to quantify fracture resistance under mixed mode conditions.
The concepts of mode mixity and surfuce toughness are unified by using generalized interface
traction components. The similarity between the anisotropic theory and existing isotropic theory is
shown. Exphicit formulac are given for misoriented orthotropic bimaterials with potential appli-
cations envisioned including composite laminates and semiconductor crystals. Competition between
crack extension along the interface and kinking into the substrate is investigated using a boundary
layer formulation, Several case studics reveal the role of anisotropy. An explicit complex variable
representation for orthotropic materials and a solution to a dislocation interacting with a crack are
presented in two self-contained Appendices.

1. INTRODUCTION

Substantial progress has been made on the mechanics of interface fracture. The recent
development is assessed in an Acta Scripta Metallurgica Proceeding edited by Ruhle ez al.
(1990). An engincering program has emerged which allows the fracture resistance of inter-
faces to be measured and utilized. Specimen geometries suitable for fracture testing are
rigorously calibrated (Suo and Hutchinson, 1989 ; Charalambides et al., 1989 ; O’Dowd et
al., 1991). The program has been implemented in experiments by several groups (Cao and
Evans, 1989 ; Wang and Suo, 1990; Liechti and Chai, 1991). Applications are made to thin
films, adhesive joints, and composite laminates (see Hutchinson and Suo, 1991).

An empirical fact is that the fracture resistance of an interface depends strongly on the
mode mixity, the relative proportion of the opening and sliding tractions ahead of the crack
tip. The concepts of mode mixity and surface toughness have recently been rationalized by
Rice (1988) for interfaces in isotropic solids on the basis of small-scale irregularities (contact
zone, inelastic zone, etc.). These concepts are extended here by applying several unifying
results due to Suo (1990) to solids of arbitrary anisotropy. The mode mixities will be defined
by the generalized interface traction components ahead of the crack tip. Explicit results,
listed for misoricnted orthotropic solids, lend themselves to immediate applications to cross-
ply laminates and brittle bicrystals. Experimental aspects of determining surface toughnesses
are briefly discussed.

A complexity in interfacial fracture testing is that, under mixed mode load, the crack
has a strong tendency to kink into the substrate. Crack kinking has been observed for brittle
substrates such as glasses. ceramics and polymers. Semiconductor crystals provide another
example where the crack may kink onto preferred crystallographic planes. The question of
whether the crack will extend along the interface, or kink into the substrate is addressed in
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Fig. . A bimaterial interface crack subject to mixed mode {oading. Two virtual crack directions
and thetr driving forees are indicated.

this paper. Figure { illustrates the two competing virtual crack extension directions, where
% and %*™ are the energy release rates for the crack to extend along, and kink out of, the
interface. These crack driving forces depend on the magnitude of the applied loads, the
relative proportion of the opening to the sliding loads, and the elastic constants. The
extension -kinking competition also involves T, and I, the fracture resistances of the
substrate and interface respectively. Broadly speaking, the tough substrate would confine
the crack to extend along the interface. Kinking is favored if
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The aim of the paper is to provide « comprehensive framework within which the material
properties I, and T, can be quantified, and the driving forces 4™ and 4 can be computed,
without ambiguity.

The plan of the paper is as follows. In Sections 2 and 3, we review the recently obtained
general results on interfuce cracks. Effort is made to extend the interfacial fracture mechanics
to include anisotropic solids, with special emphasis on orthotropic materials so that practical
problems such as delamination of composites can be addressed. In Sections 4 and 5 the
competition between crack extension along the interface and kinking into the substrate is
formulated. Case studies are presented for bicrystals and aligned orthotropic bimaterials.
An explicit complex variable representation for orthotropic solids is summarized in Appen-
dix A. The interaction solution for a dislocation and a crack, which is used as the kernel
function for the integral cquations, is presented in Appendix B.

2. CRACK TIP FIELD

Interface cracks in anisotropic solids were first analyzed by Gotoh (1967), Clements
(1971) and Wiltis (1971). Recent results of Qu and Bassani (1989), Suo (1990) and Wu
(1991) have made it possible to formulate a unified theory of a fracture toughness surface.
Specifically. the structure of the interface crack tip field has been completely identified and
analytical solutions have been found to scveral boundary value problems. The elasticity
theory is summarized in this section using the notation of Suo (1990). The treatment is
unified by a 3 by 3 positive definite Hermitian matrix, H, defined in Appendix A. The matrix
depends on the elastic constants of the two materials and has dimension of compliance. Ting
(1986) and Qu and Bassani (1989) showed that the oscillatory index & = 0 if and only if H
is real. For this reason and several other considerations that will become clear, the real and
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complex H are treated separately. As a convention, the crack lies on the (x,:) plane and
propagates in the x-direction.

2.1.Hisreal
For this case, the Hermitian matrix H becomes symmetric. Stresses are square root
singular, and linear in three stress intensity factors K, K, and K,

1
g, =

iy
J2nr
~ I

The dimensionless functions, ¢;. ¢// and ¢/’ are so normalized that the interface tractions
a distance r ahead of the tip take the familiar form

[K,6;,(0)+ Kutf.’}(f’) + Kllla.:[/l'l(e)]- 2)

K, K, K

sy Ogy = g,y =
< 2nr

)

Oy =

,/21!"' .—‘/an'

Suo (1990) noted that the angular functions in (2) are identical to those for a crack in
homogeneous materials. Specifically, the functions for substrate | are the same as those for
a crack in a homogeneous solid of the same elastic constants. The same holds for substrate
2. Consequently, these functions can be found in the article by Sih et al. (1965) on cracks
in homogeneous anisotropic solids.

With the interface traction vector t = {g,,} = {0,..0,,,0,.}, the three stress intensity
factors should be grouped as

k= {th K, Km}~ (4)

In terms of k, the near-tip traction vector can be rewritten

t(r) =

k
. 5
2nr ®

The displacement jump vector, 8 = {4,,4,,9.}, a distance r behind the crack tip is linear in

k:
o(r) = \/%Hk. 6)

The energy release rate ¢ is quadratic in k :
¢ = k"Hk. @)

Standard matrix operations are implied in the above formulae. The near-tip results given
above were first obtained by Qu and Bassani (1989).

Analytic solutions have been found for several boundary value problems. An example
is the Griffith crack of length L on the interface between two solids with real H but otherwise
generally anisotropic. The body is subject to remote stresses a,,, g,, and g,.. The stress
intensity factors are:

Kl = o’)’y\/ ."[4/2, KII = 0‘,,., / .‘:L/z, K[" = 02/ 7rL/2. (8)

It is understood that the appropriate stresses o, and o, are applied at infinity so that a
uniform strain state exists at remote boundaries.

Two important classes of problems are known to have real A: (i) a crack in a homo-
geneous anisotropic solid (Sih et al., 1965) and (ii) a crack along a tilt grain boundary with
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the crack front and tilt axis normal to a mirror plane of the material (Qu and Bassani.
1989). In the following examples. the tensor H is given explicitly for orthotropic bimaterials.
which are obtained by a simple rotation method described in Appendix A. All elastic
constants are referred to the principal coordinate as defined in Appendix A.

Example |. Crack in a principal direction in a homogeneous orthotropic solid. For a
crack running in the principal direction x,. H is a diagonal matrix with elements

Hy o =3dn(s, 50" A Heo=4dn(s,,5:0)" 25710 Hyy = 2(544555) ' . 9
For example. the general expression (7) takes the explicit form
G = \H\Kii+H K7+ HoKiyl. (10)
The order of the stress intensity factors is noted.

Example 2. Crack in an arbitrary direction in a homogeneous orthotropic solid. Consider
a crack running in the direction x, which is rotated counterclockwise from the principal
axis x, by an angle §. The matrix # has elements

o o=3an(s s G cost 0+ 4 sin? 0),

Hyy=4dn(s 5. (4 "eost 0+ sin’ 1)),
=1y = =2n(s,,52)" (2" =4 ) sin 20,
II”:Z(.V,I,;SsS)l:‘ "I||=Ilzy=l11|=11_\:=0. (ll)

Example 3. Crack on a tilt grain boundary. This is a bimaterial interface with real,
symmetric /. The tilt boundary is formed by two misoriented, but otherwise identical,
single crystals. The (v, v) planc is a plane of mirror symmetry and the crystal is orthotropic.
The principal axis x, of the two grains is rotated from the x-axis by 0, and 0,, respectively.
For a crack on the grain boundary running in the x-direction, the elements of H are

Hyyo=2n(s,,5:,) " Y[(cos® 0y +cos? 0,)A" * +(sin® 0, +sin” 0,)2 "],
flzg = 2"(3'“53:)1 :[(COS: 01 +COSZ ()3)/.. - 4+(Sin2 0| +Sin: 02)/;.l 4],
’{‘1 = [[31 = ”(JHSZZ)I 2(;.‘ 4—/.. ) I".‘)(Sin 201 —Sin 201),

H33=2(-"44555)|:~ Hyy=H,;=H; = Hy;; =0. (12)

2.2. H is complex
The structure of the crack tip ficld is governed by an algebraic eigenvalue problem

Hw = ¢ Hw (13)

where w is the eigenvector, €™ the eigenvalue, and the overbar denotes the complex
conjugate. The three distinct eigenpairs have the form (g, w), (— &, W), (0, w,). The oscillatory
index ¢ is real, eigenvectors w and w, arc complex and real, respectively, and all of them
are dimensionless. The physical significance of these quantities will be apparent shortly.
For the case of real H consequences are clear: € = 0, and any w is an eigenvector. The
eigenvectors {1,0,0}, {0.1,0} and {0.0, |} arc adopted in Section 2.1.

The crack tip field is a linear combination of two types of singularities; a coupled
oscillatory field scaled by a complex K, and a non-oscillatory field scaled by a real K, :
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Re {Kr*) Im {Kr*)
< ’*'(9)+1“—~l~w*,,(0)+

g, = —= 1
J2nr v nr 2Anr

Here the dimensionless angular functions also depend on elastic constants and can be
extracted from the near-tip solution in Suo (1990). The two stress intensities have different
dimensions,

G} (0. (14a)

K = [stress][length]' *~“, K = [stress]{length]' . (14b)

The implications of the unusual dimensions will be explained later.
An essential step towards a unified concept of the mode mixity is to decompose the
interfacial traction t = {,,} using eigenvectors as base vectors:

t=1wHiw+1,W,, 15

Here 1. 7 and t, are the generalized components of the traction vector, where t = t,+it, is
complex and ¢; is real. Note in general ¢ # o,,+i0,, and t; # .. As r =0, the two com-
ponents vary in accordance with

=" =N (16)

2nr J2nr

Since r*=exp(iclnr) =cos{elnr)+isin{zinr), the traction component ! = t,+it,
rotates as r varies. The physical significance of w and w, is now transparent. The component
t; projected onto w, is square root singular. In the plane spanned by Re(w) and Im (w),
the component ¢ rotates and is square root singular.

The crack face displacement jump vector is

5(r) = (H+1T) \/ [ K ~kf-—-'--v~——+1<,w,]. (17)

(! +"n)uo>h e (1 —-’:z)cosh rE
The encrgy release rate is related to K and Ky via

Wl
(H+H)w

g < WU )

G A coshime K>+ iwi(H+ H)yw,K3 (18)

Note the contributions from the two types of singularities are additive. These near-tip fields
were first obtained by Suo (1990).

To date, only one class of boundary value problems has been analyzed for generally
anisotropic materials, namely a colinear array of cracks on the interface between two semi-
infinite substrates. The stress intensity factors are found to be identical to their counterparts
for isotropic bimaterials. For example, for the Griffith crack described earlier, with the
applied traction vector t = {g,..0,,.0,.} decomposed into the generalized components ¢
and 1,, the solution is

K=1(1+2ie)L~*/aLl2, K;=t;/nL]2. (19)

This is formally identical to the solution for isotropic bimaterials. However, in general
{ # 0,,+i0,, and t; # o,.. Contrasted below are the near-tip field structures for isotropic
and orthotropic bimaterials.

Example 1. Isotropic bimaterial. For an interface crack between two isotropic materials,
the H matrix takes the form
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(20)
0 0 E*2u*
where, for plane strain,
2__1—vf+l—v§ 2_l+l
E* E, E, ’ H*-“l -
a=u.(l—v1)—u:(l—v|)‘ ﬁ=1un(l—2v:)—u:(1—2vl). 21
il =va)+ua(l—vy) 2 u(l=vy)+pu(1—vy)

The bielastic constants x and f are called Dundurs’ parameters. From (13), the eigenvalue
and eigenvectors are

1 1-8
£ =

Mg W -2 12.00 w = {0.01). (22)

It follows from (15) that the two traction components take the familiar form
t=o0,.+i0,. t,=a,.. (23
The stress intensity factors, K and K,, are defined such that the two traction components

a distance r ahead of the crack tip are scaled as

) Kr" K,
O, +ia, = -

e B (24)
\/an ’ \/27rr

The displacement jumps a distance r behind the crack tip are

, +i3 : 4K for 2K, \/ 2r
S +id. = 2r s 22K ,
10, (14+2ic)coshne E* \/n « 0 (25)

W\

The energy release rate is related to K and K, by

IK|? b,
C§@ = - —— 3 2
Y= Evcoshine T Z,u*K" (26)

Example 2. Aligned orthotropic bimaterial.

Consider two dissimilar orthotropic
materials bonded with the principal axes aligned, and the interface is running in the x,-
direction. The components of H are

Hyo= 3" il + (2027 5153

Hay = (20074 s, saa)i + (2027 4 511521
Hy=Hy = i[\/E+s,2].-i[\/;:-;+slz]:
Hyy = [\/;—43_5211’*[\/3‘4:9—55]:

H|3=H23=H31=H3:=0- 27

Here [ ], designates quantities for material 1. and [ ], for material 2. The generalized
Dundurs’ parameters « and f are given by
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1= (Z-D/Z+1), B=iH (H H " (28)

where £ = [/ ,s::]:,f"[\"'ls. 1522]1. The solution to the eigenvalue problem (13) is

1 1-8 i [H.s 1 (
= w={_- [22= 2 . = {0.0.1.
£ 2nlnl A { NH, 3 O} w; = 10,0, I} (29)

It follows from (135) that the generalized traction components are

t=0, +i “Ueo =0, (30)

Note that the complex component now contains a scaling factor. For example, for most
polymeric composites with cross-ply laminates ./ H,,/H;; is between | and 2. The near-tip
stress field consists of two types of singularities: an oscillatory singularity scaled by the
complex K, and a square root singularity scaled by K,

Hi Kr K
o+ if-lia\-b' = ‘F’Z: v Oy = }—: . (3 I)
I, V2nr \ﬁnr

Obscrve that the complex stress intensity factor K does not reduce to K, +iK,, when e = 0.
Ifand only if #1,,/11; = | do the stress intensity factors K reduce to the conventional stress
intensity factors. The above normalization of K is slightly different from that introduced
by Suo (1990).

The displacement jumps have the form

s Iy, K 2 2
JUNRN AL SN AN LA SU) N O bl 32
o"+l\/l'1,, O (14 2it) cosh m:\/n : » “\/n (32)

The Irwin-type energy release rate is

Ilwﬂ 3 2
f = KT LK, (33)

l] — .
4 cosh® ne

K

Example 3. Misaligned orthotropic bimaterial. The explicit form of H can be obtained
from the B-matrix (A1) in Appendix A. Details are omitted here.

3. MODE MIXITY AND SURFACE TOUGHNESS

It has been generally observed in experiments that cracks in isotropic, homogeneous,
brittle solids seck to propagate on planes ahcad of which local Mode I conditions prevail.
Conscquently, one single paramcter, K., can be designated to each material to quantify its
resistance to fracture. By contrast, whenever planes of low fracture resistance exist, cracks
may be trapped onto such planes, regardless of the local mode mixity. Orthotropic materials
such as composites and brittle crystals provide examples where definite weak planes exist :
longitudinal planes for composites and cleavage planes for crystals. Interfaces offer another
example when they are brittle compared with the substrates. A well-documented exper-
imental fact is that fracture resistance for such weak planes depend strongly on mode
mixity. Rather than a single toughness value. it is values at various mode mixities that fully
characterize the fracture resistance of a weak plane. In the following paragraphs, mode
mixity will be defined precisely for both H real and H complex.
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Fig. 2. Mode mixities defined as solid angles in the K space.

3.1. Mode mixity for material pairs with real H
When all three modes are present, the mode mixity is fully specified by two solid angles.
¥ and ¢. in the space of the interface traction vector t = {a,..0,,.0,.}.

tany =o.,/o,,, cos¢d=0./|t] as r—0. (34)

With the asymptotic ficld (3), an equivalent definition can be given in the (K, K. Kypp)
space

A’/l A'III
tan ¢ K Cos ¢ (KitKieKiph (35)
The mixities ¢ and ¢ are indicated in Fig. 2a. These definitions also apply to cracks in
homogencous materials.

For a given mode mixity ¢ and ¢, the fracture toughness | I, is defined as the energy
release rate % at the onset of crack growth. The fracture toughness, (i), ¢) is a property
of the bimaterial interfice. For a given bimaterial interface, it is a surface in the K space,
which in general should be determined directly by experiments. Upon loading, a crack will
not propagate unless the driving force reaches the surface toughness, i.e. the mixed mode
fracture condition is

G, d) = T, ). (36)

In the composite community, mode mixity is specified by the ratio 4,,/%,. For a crack
running along the principal axis in an orthotropic material, this ratio is equivalent, but not
identical, to mode mixity ¢ defined here [see (35)]. In general, however, this “energetic”
mode mixity is not advised since %, and ¥, cannot be unambiguously defined.

3.2. Mode mixity for material pairs where H is complex
The mode mixity concept can be extended to oscillatory fields by using the generalized
traction components ¢ = f,+it, and ¢y in (15):

tan § = (%) o coso= (IITOMO' (37)

Here it is necessary to introduce a fixed length L in order that the mode mixity be uniquely
specified. L must be independent of the overall specimen size and specimen types ; a sensible
choice of L should fall between the inelastic zone size and the specimen size. For example,
L = 100 pm is suitable for many brittle bimaterial specimens at the laboratory scale.
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Using the asymptotic field (16), the mode mixities n/; and ¢ can also be defined in the
K space

KL = |K|e¥, cos¢ = —ﬁ—-. (38)

VIKFP+K;3

The mode mixities ul; and ¢ are indicated in Fig. 2b. As a consequence of the oscillatory
field. the traction ratio 1,/1, varies slowly as r moves away from the tip. As implied by (38),
the phase shift fromr = L, tor = L, is

V2=, =eln(Ly/L). (39)

This would not be a big shift for moderate variations in L. For example, for a glass-alumina
interface, ¢ = 0.03, the phase shift for a decade change L, /Ll =101s l#w—llll = 6.6°.
The mixed mode fracture condition is

G, ¢) = C(Y, 9). (40)

The fracture resistance is unambiguously specified by a surface I‘(w @), together with a
length L for the definition of . This engineering approach to quantify the fracture resistance
is an extension of the existing theory for isotropic solids. The conceptual basis for this
approach is summarized in Rice (1988) and several articles in a volume edited by Ruhle er
al. (1990). The experimental implementation can be found in Wang and Suo (1990), Liechti
and Chai (1991), and Ahmad and Majumdar (1991).

Consider the loading phasc ¢ for two special cases. For an isotropic bimaterial

- Im(KL") (o,
N R (KL T () @

and for an aligned orthotropic bimaterial

+ Im(KL*) H,, <a,,)
Sk S Y M LY 10 I 42
.II R (KL") sz 0'”. rmf ( )

lmpormnt in interpreting dnd using surface toughncss

3.3. Experimental determination of surfuce toughnesses

In principle any geometry with an interface crack can be used to determine toughness.
The geometry can be calibrated by analytical or numerical evaluation of the stress intensity
factors. As an example, consider a Griffith crack of length L on the interface between two
aligned orthotropic materials. Specialized from (19), the complex stress intensity factor is

K = (1 +2ie)/aL2L"(a,,+i/H\ [Hy0.,). (43)

The loading phase ¥, extracted by comparing (43) with its definition in (38), is

- H, o L
= -1 ~-1 WUy =
 =tan~' (2&) +tan ( /sz 6,,,)+8 In (L) (44)

The last term is the phase change with crack size L under fixed applied load.
The mode mixity can be varied either by changing the proportion of the loads for
multi-load specimens or by the change of specimen configuration. A set of specimens which

SAS 29:3-€
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Fig. 3. Schematic of specimens for the determination of mixed mode delamination toughness for
cross-ply laminates.

s suitable for cross-ply composites is illustrated in Fig. 3. These gcometrics produce near-
tip ficlds ranging from predominantly tension to predominantly shear. They arc calibrated
using finite element analysis by Choi ez al. (1991). Similar specimens for uniaxial composites
have been calibrated by Bao et al. (1991) for arbitrary elastic constants.

4. KINKING IN BICRYSTALS

The topic of crack kinking is now taken up. Figure 4 shows a tilt grain boundary of
an orthotropic crystal, i.¢. the two grains are misoriented but otherwise identical. The
principal material axis vy is tilted from x by angles 0, and 0,, respectively. The (x, ») plane
is & plane of mirror symmetry, and the tilt axis and crack front are normal to the (x, 1)
planc. A small scale kinking problem is considered in that the kink length « is the only
length scale in the problem, t.e., all the other lengths are much larger than the kink length.
As noted in example 3 in Section 2.1, the matrix # for such a grain boundary crack is real,

kink | kink
KI vKn

Fig. 4. A schematic of a small-scale kink problem. The principal direction x, is tilted from the x-
axis by 1, and #, respectively. The parent crack is under mixed mode load.
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Fig. 5. Cocflicients C;, for a symmetric tilt cubic bicrystal.

and the crack tip field is non-oscillutory. square root singular. Consequently, the remote
loading can be specified by the stress intensity factors K, and K, of the familiar type.
Consistent with the spirit of the small-scale kinking formulation, K; and K, should be
computed from the actual specimen size and loading with the kink ignored. The stress
intensity factors at the kink tip are denoted by K™ and K¥™.

Lincarity and dimensionality dictate that

Ki™ =C,\ K, +C,Ky
K™ = Cy K+ CouKy 45)

where C,, depend on w, ¢, 81, 4 and p but not on kink length «. The complete solution for
4 special problem, crack deflection in homogencous orthotropic solids, has been reported
elsewhcere (Suo er al., 1991). Determination of these cocflicients requires that the boundary
layer problem be solved rigorously. An integral equation method used in He and Hutchinson
(1989) was adopted ; the kernet function needed for this work is presented in Appendix B.
Attention here is restricted to several case studies that reveal the effect of anisotropy.

4.1. Cubic bicrystuls

Consider two cubic crystals with elastic constants 2 = | and p = —0.19 which form a
symmetric tilt grain boundary with 6, = 0, = 38.9" (Fig. 4). The computed values of C,; as
a function of the kink angle w are shown in Fig. 5.

The energy release rate for the crack extending along the interface, specialized from
(12) and (7). is

4 =5, n[K}+Kj). (46)
For the kinked crack, %*™ can be obtained from (10) by sctting 2 = | and s,, = s;°
G = 5 n[(K5™) 2+ (K5™) ). (47)

Note that energy release rate relations are identical in form: a consequence of H being
anisotropic second order tensor for subic bimaterials. The ratio %*™/% is plotted as a
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Fig. 6. Crack driving force ratios ¥“"*/4 as a function of the kink angle w under several remote
loading mixities ¥ = tan~' (K,/K)).

function of kink angle w for several values of remote loading phase y in Fig. 6. Since the
parent crack is mostly likely to kink into a principal plane, i.e. w = f,, we have cross-
plotted the ratio /% as a function of loading phase  for w = 0, = 38.9" in Fig. 7. The
curve clearly shows that the available energy for kinking increases rapidly and then decreases
with the loading phase. As a comparison, the result from He and Hutchinson (1989) for
isotropic material (p = 1) 1s included in the plot. The effect of anisotropy can be seen; the
isotropic approximation would underestimate the possibility of kinking,

The additional information required to ussess the competition between extension and
kinking is the fracture resistances of the substrate and the interface, I'and I, Thus kinking
is favored if ¥*"™/¢ > " /T,

4.2. Orthotropic bicrystals

The orthotropy parameters arc taken to be 4 = 0.338 and p = 0.439 for this case study.
The principal axes of the top and bottom crystals are rotated by 0, = 30 and ¢, = 75",
respectively. The computed values of C;, are plotted in Fig. 8.

The energy release rates are computed from stress intensity factors using the Irwin-
type expressions given in Section 2.1. Figure 9 shows the ratio ¥*™/% as a function of
loading phase ¢ for w = 0, =75". For comparison purposes, the result from He and
Hutchinson (1989) is included in the plot. The effect of anisotropy can be seen; the
possibility of kinking is also underestimated by the isotropic approximation.

Asl, p2-019

hink

Q-IQ

1 L 1
o° 30° 60° 90°
14

Fig. 7. Comparison of the crack driving force ratio #*"*/4 betwecn isotropic (p = 1) and cubic
(p = —0.19) bicrystals.
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Fig. 8. Coefficients C,, for an orthotropic bicrystal.
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Fig. 9. Crack driving force ratios 4*™ /4 for orthotropic and isotropic bicrystals. The discrepancy

is clearly seen.

5. KINKING IN ALIGNED ORTHOTROPIC BIMATERIALS
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Consider a parent crack on the interface between dissimilar orthotropic materials but
bonded with aligned principal axes. As discussed in Section 2.2, the stress field at such an
interface crack tip is oscillatory and square root singular. A small-scale kinking problem is
formulated with remote applied load represented by a complex stress intensity factor K

(Fig. 10). By dimensional analysis, the stress intensity factors at the kink tip are:

K‘[m|k = C” Re (Kal‘) + C|2 Im (Kal‘)
K™ = C,, Re(Kd*)+ C,y; Im(Kd*)

(48)

where C,, depend on the kink angle w and clastic constants but not on kink size a. Since
K has the generic structure K = |[K |e¥ L=* the above relations can be rewritten more

explicitly :

Khmx = IKI[C., cos (lp.+sln %>4-C,2 sin (.p'.q..g]n %)]

K‘I‘,iﬂk = ’K'[C:l COSs (‘/;'{"8 In %>+C22 sin (|ﬁ+g In %)].

(49)
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Fig. 10. An aligned orthotropic bimaterial ts under remote mixed mode load. The parent crack
kinks into matenal 2.
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Fig. 11. Coeflicients €, for aligned orthotropic solids (4, = 1.0, p, = 0.19, 4, = 0.12, p, = 6.4).

The elastic constants for the two matenals are taken to be 4, = 1.0, p, =0.19,
Ay =0.12, p, = 6.4. The values for C,, are plotted in Fig. [1 for six different combinations
of a and f. The ratio %*™,% as a function of phasc angle ¢ +¢ In (¢/L), all with w = 90
is plotted in Fig. 12. The role of clastic mismatch parameters x and ff are clearly shown.
We point out that the phase angle in (49) is based on a fixed length L which is independent
of the specimen size. For example, L could be chosen to be comparable in magnitude with
defect size a so that the term & In («'L) is negligible. This treatment is consistent with the
mixed mode toughness concept discussed in Section 3, and avoids the conceptual ditficulties
that arise in He and Hutchinson (1989).

6. CONCLUDING REMARKS

A comprehensive framework to assess whether cracks extend along. or kink out of,
interfaces has been formulated. The framework makes advantageous use of several unifying
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Fig. 12. The ratio §*™/4 as a function of the loading phase w_+e In(L/a) for w = 90" kink.

concepts : the H tensor, eigenvectors w and w,, generalized interfacial traction components
t and ¢, and mode mixity ¢ and ¢. The framework is completely general in that no special
material symmetry is assumed. The explicit results tabulated for orthotropic bimaterials
allow immediate applications to bicrystals and cross-ply laminates. Several crack geome-
tries, which are suitable for evaluating the fracture resistance of uniaxial and cross-ply
composites, have been calibrated (Bao et al., 1990; Choi et al., 1990). Many more mixed
mode specimen calibrations and fracture testings are needed before a fully rationalized
composite material characterization can be accomplished.
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APPENDIX A: COMPLEX VARIABLE REPRESENTATION FOR ORTHOTROPIC MATERIALS

For many problems of practical interest, each of the two bonded materials is orthotropic but their principal
axes may not be aligned. The stress-strain relation in the principal coordinates is:

e AU R PN 0 07 00,
£22 Sa S In Y CBH
£y S S 8y 0 0 0 (2%
nllo 0o 0o s, 0 0 la, (&b
2e4, 0 0 0 0 s 0 7y,
V28, L0 0 li] ¢ (LI PO Y

Here 5, arc compliances which are related to the Young's moduli, shear modulus and Poisson's ratios, c.g.,
sp=E L s =UE s = UG and sy = —v B = ~v / E.
As observed in Suo (1990), the in-plane stress fields depend on two dimensionless paramicters,

TR ¥ At EENT .
A= = 0 opo= - R —{vy.vy b A2
CETR N ¢ TR NN L 2, MRS (A2)

They measure the in-planc orthotropy : 4 = p = 1 for isotropic sohids and 4 = | for solids with cubic symmetry.
Ellipticity implies that 4 > 0 and p > ~ 1. Values for representative crystals, woods and composites are in the
range 0.05 < 4 < 20and 0 < p < 5. The delinition (A2) pertains to plane stress, but is also vahid tor plane strain
if 5, 18 replaced by &), = 5, — 5,0, /8,4

The two-dimensional displacement ficld in anisotropic solids, u, = w(x, ), i = 1,2, 3, cun he represented by
three analytic functions f1(z,). f{z,) and fi(z,). The three complex variables, 2, = x+p,y (Imp, > 0), are
obtained by solving for p, from an algebraic cigenvalue problem involving the elastic constants (c.g., Stroh, 1958
Lekhnitskii, 1981). The following results for orthotropic materials are extracted from Suo (1990).

When the principal orthotropy axes x, and v, coincide with x and p, the characteristic roots are
W ey, ' Ha—-my, for lep<ax
popr=< 4 Yinem), AV in—-my, for —l<p<l|
it 7o for p=1

Py =i(saalssy)'’ (A3)

where n = [(1+p)/2]'3%, m = |(1 = p)/2""%. The constant n appears in many formulae. The two fundumental
matrices involved in the complex variable representation are

~-p, —py O FpiE S SpiEs 07
L = 1 1 0 | A= |Sap+supy Supatiniy _0__ - (Ad)
0 0 -1 0 0 (/S4aSss

The matrix B defined by 8 = 4L " " takes the explicit form

R A OO IS L (5,822} T+502) 0
B= | —illsis) 5 AT s : 0 . (A9
0 0 (*'u")s)' :

Stroh (1958) showed that B is a positive definite Hermitian matnx for materials of general anisotropy. This can

be verified directly from {AS) for our special case. ‘ .
When the principal axes (x,,x;) do not coincide with {x. y} the above matrices can be obtained by an in-

plane coordinate rotation:
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cos@ sinf 0
R= | —sinf cos8 0 (A6)
0 0 1

where 8 is the angle from x, to x and is positive in a counterclockwise sense. Ting (1982) showed that the
characteristic roots in (x. y) coordinates are

P’ = (p, cos 8 —sin 6)/(p, sin §+cos ) (A7)
and each column of 4 and L transforms like a vector:
A*=RA. L*=RL. (A8)
It is obvious from its definition, B = i4L . that the matrix B transforms like a second order tensor, i.e.
B* = RBR". (A9

The subsequent discussion involves quantities in the (v, y) coordinate (the starred quantities). For convenience
the (*) is dropped hereafter, for example. =, = x+p,». Once the potentials /(= ). f:(s,) and f,(z,) are found for
a boundary valuc problem, the displacements u,, stresses o, and resultant forces T, on an arc can be computed
from

ul

3 1
2Re Y A, /). T,==2Re Y L, fi(z).
J=1

TN

1 3
ay=2ReY L,f(z). ay,==2ReY L,p,[}(z) (A10)
i=1

J=1

Here () is the derivative with respect to the argument. Notice from (A3) that the above representation breaks
down when p = 1. A special representation for this degencrate case is given in Suo (1990). The matrix B with
respect to the x, paxes, at an angle 0 from the principal axes, is

By = 2n(s,,5,) (A cos? 04+ 47" sin? )
2= 205, 52) A T cosT O+ A sin? 0)
Biy=By = —n(s;,52) (A =17 sin 20+ i((5,,522) P +542)

B“=(A.“x”)uz' By=8)=8,=8,,=0. (ALD)

This is obtained by the tensor rule (A9). Although the discussion is directed to orthotropic materials, the
representation in (A10) is valid for general anisotropic materials, but the characteristic roots p, and the three
matrices A, L and B should be computed according to the procedure outlined in Stroh (£958).

The results up to this point pertain to a single homogeneous material. The bimaterial matrix # of central
importance is defined by

H=8 +5, (A12)

where the subscripts | and 2 indicate the two materials and the overbar denotes complex conjugation. H is
obviously a positive definite Hermitian matrix. The explicit form of H for misoriented orthotropic bimaterials
can be obtained from (A11), and several special cases are listed in the text.

APPENDIX B: DISLOCATION INTERACTING WITH A TRACTION-FREE INTERFACE
CRACK

Attention here is restricted to solids with (., y) as a mirror plane and the in-planc deformation is considered.
Only upper-left 2 by 2 matrices of L, A, 8 and H, and two potentials fi(z,) and f+(z,) arc involved. Following
Suo (1990), introduce a vector potential

() = {/1(2). /1)) (BD)

Note the arguments of both f, and f; in (B1) are identical, and have the form : = x4y (Im{ > 0). Once a solution
of f(z) is obtained, /, and /, should be used with the arguments =, and z,, respectively, to compute the displacements
and stresses from (A 10). This strategy allows the standard matrix algebra to be used in conjunction with a number
of analytic function concepts.
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(o) (o) (c)

Fig. Bl. A superposition scheme to obtain the kernel functions. (a) A dislocation embedded in a
pertectly bonded bimatenal. {b) An interface crack with tractions prescribed on the faces, with no
dislocation. (¢) Interaction between a dislocation and u traction-free cruck.

Consider a line distocation perpendicular to the (v, 1) plane with Burgers vector b = | A, b} at the point
(o, vo) interacting with a traction free crack (Fig. Ble). The solution may be obtained by superposition of the
following two problems: (a) a dislocation in a bimaterial with no crack (Fig. Bla): (b) an interface crack with
traction prescribed to cancel the tnterface traction, but without dislocation (Fig. BIb). The solution procedure
wis outlined in Suo (1990) but only the case & = 0 was solved. Detailed below is the solution for the general case
when e # 0.

The solution to a dislocation in an infinite space of material 2 s (Eshelby er al., 1953)

L=l Inz—s)g:In(z—s)' s, =X+ v, gy =0C2n) 'Li'(B,+B,) b (BY)

Constructed from £,(2). the solution to problem (a) in Fig. Bl is

LH B+ BOLE(D), in material {
f(2) = Vm LB BT . . (B3
f(+L, "1 "B, BT, inmaterial 2.
The interface traction calculated trom(B3) and (A 10) is therefore
) = CO+CT, C=H Y(B.+B)1. (B4

This traction 1s removed from the prospective erack fuces using problem (b) in Fig. BI. The solution to the latier
cun be represented as

[, "hiz), i naterial |
ey e 5
1o 1!.: YHOTHN(D),  momaterial 2 (B%)
An cigenvector decomposition is employed to solve tor h:
h(z) = h(D)w+h()w (B6)
where wis the crgenvector detined in the body of the text. The components are:
L Y nade .
h(z) =" - . (z) ==z '°',
(2 i J L ()(x—2) L
1aA2) [o f(x)dx .
Iz = %5 AU =z e (B7)
() i J L% (X =2) 1:4)
Here 7 1s the component of tin the sense t = (w + 1w, so that
wiHt(x) L, .
M) = = el () +elf(x)
wi(B.+ 8.1, : Wi, + B[,
c{':"(lg_'+g')1‘. c!:c"“w(_‘+ s (B%)
w/ Hw - W/ hw
Integration of (B7) gives
- X;(-ﬂ) oy (l— Ll(:l) ¢
cf Li(s) /2=, et X)) =5,
() = t o -
R T A [ TCAR S
Lilsy) )z -5 xi{§:) )z =5,
(l _ X:(:)) ”(7}
e L850 ) 2 =5, 3
T+ (BY)

hoz) = oo -
t+e <| - l(fl) A
182 -5,



